Anatoly Vorobey (avva) wrote,
Anatoly Vorobey
avva

решение задачки

Вот очень красивое (по-моему) решение непростой математической задачки, которую я поместил в журнале в ночь на воскресенье.
Если кто-то не хочет смотреть, а хочет решать сам, не заглядывайте под лж-кат.



Итак, у нас есть четырёхугольник ABCD в пространстве, так что все его стороны касаются одной и той же сферы. Обозначим точки касания T1, T2, T3 и T4 (по порядку обхода: т.е. T1 - точка касания стороны AB, T2 - стороны BC, T3 - стороны CD и T4 - стороны DA). Нам нужно доказать, что эти четыре точки лежат в одной плоскости.

Сначала заметим тот очевидный факт, что расстояние от каждой вершины до любой из точек касания, связанных с этой вершиной, одинаковое: например, расстояния AT1 и AT4 одинаковые. Это следствие того общего факта, что расстояние от точки A до любой точки касания T на сфере по какой-то касательной AT не зависит от выбора T, а зависит только от A и сферы (например, из соображений симметрии; просто нарисуйте в уме A и сферу в симметричном положении, и всё станет ясно). Таким образом, AT1=AT4, BT2=BT1 итд. для всех точек.

Теперь мы делаем следующее: помещаем в каждую из вершин A,B,C,D массу, равную обратному расстоянию от этой вершины до её точек касания (например, в килограммах). Скажем, в вершину A мы помещаем массу, равную 1/AT kg. Теперь достаточно напрячься и припомнить определение центра масс, чтобы заключить, что центр масс системы точек {A,B} находится в точности в точке T1, центр масс системы точек {B,C} находится точно в T2 итп.

Если мы сгруппируем точки так: {A,B} и {C,D}, то увидим, что центр масс первой группы находится в T1, второй — в T3, а следовательно центр масс всей системы находится на прямой, соединяющей T1 и T3. Если же мы сгруппируем точки так: {A,D} и {B,C}, то точно таким же образом увидим, что центр масс всей системы находится на прямой, соединяющей T2 и T4.

Т.к. это один и тот же центр масс, это одна и та же точка. Вывод: прямые T1T3 и T2T4 пересекаются. Следовательно, вместе они образуют плоскость, в которой и лежат все четыре эти точки. Что и требовалось доказать.

P.S. Решение было подправлено несколько раз в мелочах (у меня плохая память и мне надо больше спать), спасибо oblomov_jerusal и drw.
Subscribe
  • Post a new comment

    Error

    default userpic

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 24 comments