Anatoly Vorobey (avva) wrote,
Anatoly Vorobey
avva

задачки

Две красивые задачки с элементарным, но не совершенно тривиальным решением. Мне понравились. Не знаю, насколько они известны; я наткнулся на них в старом выпуске American Mathematical Monthly.

  1. Пусть S — множество всех натуральных чисел, у которых нет простых делителей, больших, чем 3. Доказать, что любое натуральное число можно представить в виде суммы набора чисел из S, так, что числа в наборе не повторяются, и ни одно число в наборе не кратно никакому другому.

  2. Пусть T — множество всех натуральных чисел, у которых нет простых делителей, кроме 2, 5 или 7. Доказать, что заключение предыдущего пункта выполняется (для T, а не для S, естественно) для любого достаточно большого натурального числа.


Если вдруг (хоть я в это не верю) не появится правильное решение в комментариях за несколько дней, то я опубликую своё доказательство. Тому, кто хочет решать сам, в комментарии лучше не заглядывать (я хоть и буду скрывать на время правильные решения или значительные шаги к ним, но не всегда оперативно).
Subscribe
  • Post a new comment

    Error

    default userpic

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 32 comments