Anatoly Vorobey (avva) wrote,
Anatoly Vorobey
avva

Category:

математика, о биссектрисах

Биссектриса —
Это такая крыса,
Которая бегает по углам
И режет угол пополам.

На уроках математики в школе больше всего не любил геометрию. У меня всегда плохо было с геометрическим (а после выяснилось, что еще хуже - именно с пространственным) воображением.

С биссектрисами вышло так. Если треугольник равнобедренный, то у него два угла равны между собой, и биссектрисы из этих двух углов равны по длине. С другой стороны, если в треугольнике биссектрисы двух углов равны, то равны и сами эти углы, и треугольник равнобедренный. Одно из этих двух утверждений тривиально, а другое довольно сложно доказать, но я никак не мог запомнить, какое! Не говоря уж о том, чтобы запомнить это "довольно сложное" доказательство (кажется, его не было в школьной проргамме, но во время подготовки к какой-то олимпиаде я его учил).

Может, я не один был такой с этой путаницей? Короче, вот мне попалось вчера красивое и не очень сложное доказательство, с готовой картинкой. Перепишу его по-русски.

В общем, тривиальное направление - это когда мы знаем, что треугольник ABC равнобедренный, ∠A = ∠B, и хотим доказать, что биссектрисы этих двух углов, AD и BE, равны между собой. Если обозначить точку их пересечения I, то ясно, что части этих биссектрис до I равны: AI=BI, потому что ABI - тоже равнобедренный треугольник; а их части после I равны: ID=IE, потому что треугольники AIE и BID равны: у них равны стороны AI=BI, и оба прилегающих к этим сторонам угла.

Нетривиальное направление - это когда мы предполагаем, что равны биссектрисы углов ∠A и ∠B, AD = BE, и хотим доказать, что эти углы равны: ∠A = ∠B. Это называется Steiner-Lehmus Theorem, Гугль находит всякую информацию и доказательства. То доказательство, которое я объясняю, опирается на дополнительное построение, обозначенное на рисунке: проведем от точки D луч, параллельный AE, а от точки E - луч, параллельный AD. Они встретятся в точке F и мы получаем параллелограм ADFE с равенством противоположых сторон; соединим также F с B.

Теперь предположим, что углы неравны, и ∠A > ∠B. Тогда то же верно касательно их половин: ∠BAD > ∠ABE. Т.к. две стороны треугольников ABD и ABE, прилегающие к этим углам, попарно равны (AB равна самой себе, а AD=BE согласно условию), третья сторона больше там, где больше угол, т.е. получаем BD > AE.

С другой стороны, посмотрим на две другие половины тех же углов: ∠DAC > ∠EBC, а угол DAC равен противоположному ему в параллелограмме ∠DFE, поэтому ∠DFE > ∠EBC. Однако два угла треугольника EBF , из которых эти составляют часть, равны между собой: ∠BFE = ∠EBF, и это потому, что треугольник равнобедренный, EF=BE (ведь EF равна AD в параллелограмме, а AD=BE по условию). Поэтому вычитая неравные углы из равных, получаем неравенство ∠DFB < ∠DBF. В любом треугольнике меньшему из двух углов противостоит меньшая из двух сторон, поэтому из ∠DFB < ∠DBF мы можем заключить BD < DF, а DF=AE в параллелограмме, поэтому BD < AE. Мы пришли к противоречию с доказанным ранее BD > AE.

Поэтому не может быть, чтобы ∠A > ∠B, и аналогичным образом доказывается, что не может быть ∠A < ∠B. Следовательно, углы равны.

Может, теперь не забуду если не само доказательство, то хотя бы то, какое из направлений нетривиально :)

Subscribe
  • Post a new comment

    Error

    default userpic

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 31 comments