November 5th, 2002

moose, transparent

парадокс спящей красавицы

Не так уж часто в наше время придумывают новые парадоксы, или, по крайней мере, парадоксальные задачи. Вот одна очень интересная, по-моему, задача, которую придумали всего лет пять назад и которую довольно активно обсуждают в последние годы в профессиональной литературе. Впервые она появилась в качестве примера в статье двух статистиков, но популяризовал её и инициировал её философское обсуждение американский философ Адам Эльга.

Итак, у нас есть Спящая Красавица, которую мы назовём, скажем, Леной. Исследователи проводят над Леной следующий эксперимент, который начинается, скажем, в воскресенье. Вначале они кидают честную монетку ("честную" -- значит, вероятность выпадения орлом равна в точности 1/2, и решкой в точности 1/2) и записывают результат, но не говорят его Лене. В воскресенье вечером Лена засыпает. В понедельник утром она просыпается, и сразу после её пробуждения случается одно из двух. Если монета выпала орлом (напомню, что Лена в любом случае этого не знает), то у Лены спрашивают, какова её уверенность в том, что монета выпала орлом ("уверенность" - так я пробую перевести английское credence; это означает здесь субъективную вероятность, т.е. какова с точки зрения Лены вероятность того, что монета выпала орлом). Если монета выпала решкой, то у Лены тоже спрашивают, какова вероятность того, что она выпала орлом, но потом в понедельник вечером ей дают специальный медикамент, действие которого заключается в том, что у неё полностью исчезают воспоминания всех последних 24 часов. Лена засыпает, просыпается во вторник утром, и её опять спрашивают о её уверенности в том, что монета выпала орлом.

Действие медикамента, таким образом, приводит к тому, что Лена, когда она просыпается, не знает, проснулась ли она в понедельник, в первый раз, или во вторник, во второй раз (но это второе пробуждение случится, только если монета выпала решкой). В обоих случаях она помнит только, как она заснула в воскресенье вечером; все её воспоминания и ощущения абсолютно идентичны. Вопрос ей задают сразу после пробуждения -- до того, как она может узнать, какой сегодня день.

Предположим, что Лена рассуждает абсолютно рационально, и что она знает все подробности данного эксперимента, т.е. она знает всё, что будут делать исследователи в обоих случаях (но не знает, как выпала монетка). Лена просыпается в понедельник утром (её первое пробуждение) и её спрашивают о степени её уверенности в том, что монетка выпала орлом. Вопрос: что ей следует ответить?

На этот вопрос есть два возможных ответа:
1. Ей следует ответить, что вероятность выпадения орла - 1/2.
2. Ей следует ответить, что вероятность выпадения орла - 1/3.

Существуют немало аргументов в пользу каждого из этих двух ответов. Вот довольно типичные их примеры:
Collapse )
moose, transparent

зелёная книга

Прочитал "Зелёную книгу" Муамара Каддафи, излагающую Третью Всемирную Теорию, решающую раз и навсегда проблему демократии (первая часть), экономическую проблему (вторая часть) и общественную проблему (третья часть).

Много думал .

На самом деле, очень смешная книга.