December 10th, 2017

moose, transparent

бесконечность и континуум в физике

Прочитал жутко интересную обзорную статью Джона Баэза о проблемах бесконечно больших и малых расстояний в физике, очень рекомендую:

Struggles with the Continuum (PDF)

Все современные физические теории опираются на понятие пространственного или пространственно-временного континуума, в котором единицы длины и времени делятся на сколь угодно малые величины. Мы не знаем на самом деле, является ли физическое пространство таковым - бесконечно делимым - или есть какая-то очень малая фундаментальная единица длины, меньше которой ничего быть не может. Но статья Баэза не совсем об этом - она о том, что даже если пространство-время можно бесконечно делимы, известные нам физические теории не вполне справляются с тем, что происходит в пределе все меньших и меньших расстояний.

Может ли ньютоновская теория притяжения корректно описать столкновение двух точечных частиц, притягивающих друг друга? Если считать электрон точечной заряженной частицей, то как на него действует создаваемое им самим электрическое поле? Оказывается, например, что наивный подход - посмотреть на электрон как на крохотную сферу, равномерно покрытую зарядом, а потом устремить радиус сферы к нулю - дает неверное значение энергии. А попытка описать действие электромагнитного поля на частицу, движущуюся в нем с ускорением, дает очень странную формулу, предсказывающую парадоксальные решения, не наблюдаемые на опыте.

О всем этом в данной статье, а также о перенормировке в квантовой теории поля (это кстати написано очень понятным и ясным языком, впервые у меня создалось пусть наивное, но представление о том, как это работает и зачем необходимо), о Стандартной Модели и о черных дырах и сингулярностях в общей теории относительности.

Плюс там отличная, на первый взгляд, библиография с кучей интересных статей об истории всех этих открытий, на которые он ссылается в тексте.

Пример цитаты оттуда:

"In practice, quantum field theory is marvelously good for calculating answers to many physics questions. The answers involve approximations. These approximations seem to work very well: that is, they answers that match experiments. Unforunately we do not fully understand, in a mathematically rigorous way, what these approximations are supposed to be approximating."