Which number system is “best” for describing empirical reality?
Автор задается вопросом, действительно ли необходимо использовать вещественные числа для описания физической реальности. Ведь мы не воспринимаем их непосредственно, и все наши измерения имеют лишь определенную конечную точность, так что, казалось бы, может быть достаточно, скажем, рациональных чисел для того, чтобы описать все, что происходит в природе. Но такой "экономичный" подход сталкивается с двумя сложностями:
- во-первых, со времен Пифагора известно, что простейший прямоугольный треугольник со сторонами длиной в единицу выходит за рамки рациональных чисел - длина его гипотенузы равна √2. Если мы отказываем корню из двух в 'физическом' существовании, значит, мы заранее смиряемся с тем, что треугольник не может существовать в физическом мире. С другой стороны, можно счесть треугольник всего лишь приближением к тому, что существует в мире (собственно, поскольку наше пространство неэвклидово, так оно и есть).
- во-вторых, те физические теории, которые лучше всего описывают реальность до сих пор, основаны на дифференциальном и интегральном исчислении, требующем вещественных чисел (точнее, они требуют возникающих благодаря вещественным числам понятий пределов, производных, интегралов итд.). Наверное, можно построить приближения к этим теориям, опирающиеся только на рациональные числа, но кажется, что они будут куда более громоздкими и несуразными, а возможно и принципиально ущербными.
Автор статьи занимается только первой из этих двух сложностей, предлагая возможные "промежуточные" варианты между рациональными и действительными числами (например, числа, которые можно построить с помощью циркуля и линейки; или алгебраические числа); ни один из них не кажется мне особенно привлекательным. С другой стороны, хочу порекомендовать гораздо более подробную запись
О бесконечности и о точке
Я немного думал об этих вопросах несколько с другой стороны, нежели автор первой статьи. Его интересует вопрос: какие числа лучше всего отражают то, что мы наблюдаем в реальности? Я к тому же вопросу подходил немного с другой стороны. Представьте себе, что мы встречаем-таки инопланетян, находим их или они находят нас, и начинаем пытаться понимать друг друга. В научной фантастике не раз и не два авторы обсуждали вопрос о том, будет ли у нас "одна и та же математика", и это вопрос философский, вопрос философии математики, собственно. Большинство профессиональных математиков являются - иногда бессознательно, иногда осознанно - "платонистами", т.е. они считают, что математические формулы, гипотезы и теоремы суть не бессмысленные закорючки на бумаге, которые придуманы человеческим мозгом и только к нему имеют отношение, а отражают некую фундаментальную реальность, независимую от нас, "платонический" мир математических идей, который один и тот же для всех: теорема Ферма верна и на Земле, и у инопланетян, и она была бы верна, даже если бы никакого человечества никогда не возникло. Мы "открываем" математические истины, а не "создаем" их - в этом суть платонизма. Так вот, предположив, что платонизм верен, и что как мы, так и инопланетяне "видим" ту же математическую реальность, все равно можно задать вопрос: насколько их математика будет похожа на нашу? Если предположить, что счет отдельных объектов - нечто совершенно фундаментальное для всех, то у них, наверное, будут те же натуральные, целые, и рациональные числа, что у нас - но будут ли вещественные числа? Возможно, они понимают, что это такое математически, но не считают их важными, потому что для развития теорий о том, как устроен физический мир, им хватило рациональных? Возможно, то, что нам кажется излишне громоздким и неэлегантным описанием в терминах рациональных чисел, для них приемлемо, потому что мозги у них устроены по-другому, и понятия громоздкости и элегантности совсем другие?
← Ctrl ← Alt
Ctrl → Alt →
← Ctrl ← Alt
Ctrl → Alt →