Anatoly Vorobey (avva) wrote,
Anatoly Vorobey
avva

задачка

Отличная задачка от IBM.

Перевод условия: Алиса и Боб играют против казино следующую игру: в каждом раунде Алиса выбирает бит 0/1, потом Боб, потом казино; все выборы публичные. Алиса и Боб выиграли раунд, если все три выбора одинаковые, и проиграли в обратном случае. При таких условиях казино побеждает тривиальным образом (т.к. видит выборы Алисы и Боба), поэтому на самом деле казино заранее записывает все свои выборы и они хранятся в сейфе и открываются по одному.

Алиса и Боб могут договориться о стратегии заранее, но не могут обмениваться информацией во время игры (кроме своих выборов). Перед началом игры Боб подкупает работников казино и получает всю последовательность выборов казино, но он не может уже к этому моменту передать эту информацию Алисе.

При этих условиях Алиса и Боб могут обеспечить себе победу в 50% раундов: на нечетных раундах Боб выбирает то, что Алиса (и Боб) должны поставить в следующем раунде, и таким образом во всех четных раундах они выигрывают.

Нужно доказать, что в игр в n=9 раундов Алиса и Боб могут обеспечить минимум 6 побед.

Я пока что знаю, как обеспечить 5 побед, а 6 не могу. Буду еще думать.

Прошу не спойлерить - если у вас есть полное решение, дайте ссылку на свой журнал или поместите его на pastebin.com и дайте ссылку туда - это занимает ровно минуту без регистрации.

Update: AAAAAAAAAAAAAAAAAAAAAA!
Tags: задачка
Subscribe
  • Post a new comment

    Error

    default userpic

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 62 comments
Previous
← Ctrl ← Alt
Next
Ctrl → Alt →
Previous
← Ctrl ← Alt
Next
Ctrl → Alt →