Anatoly Vorobey (avva) wrote,
Anatoly Vorobey
avva

Category:

задачка про куб и додекаэдр

«1. Выбраны 6 различных цветов; требуется раскрасить 6 граней куба, каждую в особый цвет из числа избранных. Сколькими геометрически различными способами можно это сделать? Геометрически различными называются две такие расцветки, которые нельзя совместить одну с другой при помощи вращений куба вокруг его центра.

2. Решить ту же задачу для случая раскраски граней правильного двенадцатигранника в 12 различных цветов.»




Я узнал об этой задаче из поста Григория Мерзона, который рассказал, что она предлагалась на первой московской математической олимпиаде - в 1935 году! - и самое удивительное, что из 120 участников ее никто не решил. Сейчас на математических олимпиадах таких относительно простых задач не дают, так что это что-то говорит о стандартах разных эпох, видимо.

Ну, мне она понравилась, и хотя не сразу (у меня вообще очень плохо с геометрической интуицией), я ее решил. Может, и вам понравится.

(скрывать комментарии не буду, и там скоро появятся правильные решения, думаю. Если условие или решения непонятны, можно задавать вопросы, поможем)
Tags: задачка
Subscribe
  • Post a new comment

    Error

    default userpic

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 90 comments
Previous
← Ctrl ← Alt
Next
Ctrl → Alt →
Previous
← Ctrl ← Alt
Next
Ctrl → Alt →