Anatoly Vorobey (avva) wrote,
Anatoly Vorobey
avva

Category:

парадокс спящей красавицы

Не так уж часто в наше время придумывают новые парадоксы, или, по крайней мере, парадоксальные задачи. Вот одна очень интересная, по-моему, задача, которую придумали всего лет пять назад и которую довольно активно обсуждают в последние годы в профессиональной литературе. Впервые она появилась в качестве примера в статье двух статистиков, но популяризовал её и инициировал её философское обсуждение американский философ Адам Эльга.

Итак, у нас есть Спящая Красавица, которую мы назовём, скажем, Леной. Исследователи проводят над Леной следующий эксперимент, который начинается, скажем, в воскресенье. Вначале они кидают честную монетку ("честную" -- значит, вероятность выпадения орлом равна в точности 1/2, и решкой в точности 1/2) и записывают результат, но не говорят его Лене. В воскресенье вечером Лена засыпает. В понедельник утром она просыпается, и сразу после её пробуждения случается одно из двух. Если монета выпала орлом (напомню, что Лена в любом случае этого не знает), то у Лены спрашивают, какова её уверенность в том, что монета выпала орлом ("уверенность" - так я пробую перевести английское credence; это означает здесь субъективную вероятность, т.е. какова с точки зрения Лены вероятность того, что монета выпала орлом). Если монета выпала решкой, то у Лены тоже спрашивают, какова вероятность того, что она выпала орлом, но потом в понедельник вечером ей дают специальный медикамент, действие которого заключается в том, что у неё полностью исчезают воспоминания всех последних 24 часов. Лена засыпает, просыпается во вторник утром, и её опять спрашивают о её уверенности в том, что монета выпала орлом.

Действие медикамента, таким образом, приводит к тому, что Лена, когда она просыпается, не знает, проснулась ли она в понедельник, в первый раз, или во вторник, во второй раз (но это второе пробуждение случится, только если монета выпала решкой). В обоих случаях она помнит только, как она заснула в воскресенье вечером; все её воспоминания и ощущения абсолютно идентичны. Вопрос ей задают сразу после пробуждения -- до того, как она может узнать, какой сегодня день.

Предположим, что Лена рассуждает абсолютно рационально, и что она знает все подробности данного эксперимента, т.е. она знает всё, что будут делать исследователи в обоих случаях (но не знает, как выпала монетка). Лена просыпается в понедельник утром (её первое пробуждение) и её спрашивают о степени её уверенности в том, что монетка выпала орлом. Вопрос: что ей следует ответить?

На этот вопрос есть два возможных ответа:
1. Ей следует ответить, что вероятность выпадения орла - 1/2.
2. Ей следует ответить, что вероятность выпадения орла - 1/3.

Существуют немало аргументов в пользу каждого из этих двух ответов. Вот довольно типичные их примеры:


1. До того, как Лена заснула в воскресенье вечером, она знала, что вероятность выпадения орла - 50%, т.е. 1/2. Когда она просыпается в понедельник утром, то по сравнению с предыдущим вечером она не получила никакой новой информации (и не потеряла никакой информации -- это может случиться только на следующий вечер, когда ей дадут медикамент, в случае выпадения решки). Всё, что она "знает" нового - это то, что она проснулась; но она и предыдущим вечером знала, что проснётся в любом случае, независимо от того, как выпадет монета. Следовательно, раз у неё нет никакой новой информации, её оценка вероятности выпадения орла не может измениться, и она должна ответить 1/2.

2. Предположим, что мы запускаем этот эксперимент очень много раз. Среди всех возможных пробуждений Лены некоторые будут приходиться на понедельники, а некоторые -- на вторники; некоторые будут соответствовать случаям, когда выпадал орёл, некоторые - решке. Но тех, которые будут соответствовать орлу, будет ровно треть от общего числа пробуждений (т.к. при орле Лена просыпается один раз, при решке - дважды). Т.к. Лена никак не может отличить одно пробуждение от другого -- у неё нет никакой информации, позволяющей их различить -- ей следует заключить, что её оценка вероятности выпадения орла равна 1/3.

Оба эти аргумента в каком-то смысле неформальны, но их можно попробовать усилить и уточнить (что разные люди и пытаются сделать).

Те, кто поддерживают ответ 1/2, по-английски в неформальных обсуждениях называют себя halfers, а те, кто считают, что правильный ответ 1/3 - thirders (от "half" и "third", соответственно). Наверное, лучше всего перевести это на русский как "двоечники" и "троечники" (если есть другие предложения, высказывайте). Я, например, пока что считаю себя троечником. А вы как думаете?
Subscribe
  • Post a new comment

    Error

    default userpic

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 119 comments
Previous
← Ctrl ← Alt
Next
Ctrl → Alt →
Previous
← Ctrl ← Alt
Next
Ctrl → Alt →